Меню

Сила веса, формулы. Чем отличается вес от массы? Вес тела определение формула единица измерения

Прочее рукоделие

Иногда используется единица СГС - дина .

Энциклопедичный YouTube

    1 / 1

    ✪ Hypnosis for Weight Loss (Guided Relaxation, Healthy Diet, Sleep & Motivation)

Субтитры

Свойства

Вес P тела, покоящегося в инерциальной системе отсчёта P {\displaystyle \mathbf {P} } , совпадает с силой тяжести, действующей на тело, и пропорционален массе m {\displaystyle m} и ускорению свободного падения g {\displaystyle \mathbf {g} } в данной точке:

P = m g {\displaystyle \mathbf {P} =m\mathbf {g} }

Значение веса (при неизменной массе тела) пропорционально ускорению свободного падения, которое зависит от высоты над земной поверхностью (или поверхностью другой планеты, если тело находится вблизи неё, а не Земли, и массы и размеров этой планеты), и, ввиду несферичности Земли , а также ввиду её вращения (см. ниже), от географических координат точки измерения. Другим фактором, влияющим на ускорение свободного падения и, соответственно, вес тела, являются гравитационные аномалии , обусловленные особенностями строения земной поверхности и недр в окрестностях точки измерения.

При движении системы тело-опора (или подвес) относительно инерциальной системы отсчёта c ускорением a {\displaystyle \mathbf {a} } вес перестаёт совпадать с силой тяжести:

P = m (g − a) {\displaystyle \mathbf {P} =m(\mathbf {g} -\mathbf {a})}

Вместе с тем строгое различение понятий веса и массы принято в основном в науке и технике, а во многих повседневных ситуациях слово «вес» продолжает использоваться, когда фактически речь идет о «массе». Например, мы говорим, что какой-то объект «весит один килограмм», несмотря на то, что килограмм представляет собой единицу массы .












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Данная презентация предназначена в помощь учащимся 9-10 классов при подготовке темы «Вес тела».

Цели презентации:

  1. Повторить и углубить понятия: «сила тяжести»; «вес тела»; «невесомость».
  2. Акцентировать внимание учащихся на то, что сила тяжести и вес тела – разные силы.
  3. Научить учащихся определять вес тела, движущегося по вертикали.

В повседневной жизни массу тела определяют взвешиванием. Из курса физики 7 класса известно, что сила тяжести прямо пропорциональна массе тела. Поэтому вес тела часто отождествляют с его массой или силой тяжести. С точки зрения физики – это грубейшая ошибка. Вес тела – это сила, но сила тяжести и вес тела – разные силы.

Сила тяжести – частный случай проявления сил всемирного тяготения. Поэтому уместно вспомнить закон всемирного тяготения, а также то, что силы гравитационного притяжения проявляются тогда, когда тела или одно из тел имеют огромные массы (слайд 2).

При применении закона всемирного тяготения для земных условий (слайд 3) планету можно рассматривать как однородный шар, а небольшие тела вблизи ее поверхности как точечные массы. Радиус земли равен 6400 км. Масса Земли равна 6∙10 24 кг.

= ,
где g – ускорение свободного падения.

Вблизи поверхности Земли g = 9,8 м/c 2 ≈ 10 м/c 2 .

Вес тела – сила, с которой это тело действует на горизонтальную опору или растягивает подвес.


Рис.1

На рис. 1 показано тело на опоре. Сила реакции опоры N (F упр) приложена не к опоре, а к находящемуся на ней телу. Модуль силы реакции опоры равен модулю веса по третьему закону Ньютона. Вес тела – частный случай проявления силы упругости. Важнейшей особенностью веса является то, что его значение зависит от ускорения, с которым движется опора или подвес. Вес равен силе тяжести только для покоящегося тела (или тела, движущегося с постоянной скоростью). Если же тело движется с ускорением, то вес может быть и больше, и меньше силы тяжести, и даже равным нулю.

В презентации на примере решения задачи 1 рассматриваются различные случаи определения веса груза массой 500 г, подвешенного к пружине динамометра, в зависимости от характера движения:

а) груз поднимают вверх с ускорением 2 м/c 2 ;
б) груз опускают вниз с ускорением 2 м/c 2 ;
в) груз равномерно поднимают вверх;
г) груз свободно падает.

Задания на расчет веса тела входят в раздел «Динамика». Решение задач на динамику основывается на использовании законов Ньютона с последующим проецированием на выбранные оси координат. Этим определяется последовательность действий.

  1. Выполняют чертеж, на котором изображают силы, действующие на тело (тела), и направление ускорения. Если направление ускорения неизвестно, его выбирают произвольно, а решение задачи дает ответ о правильности выбора.
  2. Записывают второй закон Ньютона в векторном виде.
  3. Выбирают оси. Обычно одну из осей удобно направить вдоль направления ускорения тела, вторую – перпендикулярно ускорению. Выбор осей определяется соображениями удобства: так, чтобы выражения для проекций законов Ньютона имели бы наиболее простой вид.
  4. Полученные в проекциях на оси векторные уравнения дополняют соотношениями, вытекающими из текста условий задачи. Например, уравнениями кинематической связи, определениями физических величин, третьим законом Ньютона.
  5. Используя полученную систему уравнений, пытаются дать ответ на вопрос задачи.

Настройка анимации в презентации позволяет сделать акцент на последовательность действий при решении задач. Это важно, так как навыки, приобретенные при решении задач на расчет веса тела, пригодятся учащимся при изучении других тем и разделов физики.

Решение задачи 1.

1а. Тело движется с ускорением 2 м/c 2 вверх (слайд 7).


Рис.2

1б. Тело движется с ускорением вниз (слайд 8). Ось OY направляем вниз, тогда проекции сил тяжести и упругости в уравнении (2) меняют знаки, и оно имеет вид:

(2) mg – F упр = ma.

Следовательно, Р = m(g-a) = 0,5 кг∙(10 м/c 2 - 2 м/c 2) = 4 Н.

1в. При равномерном движении (слайд 9) уравнение (2) имеет вид:

(2) mg – F упр = 0, т. к. ускорение отсутствует.

Следовательно, Р = mg = 5 Н.

1г. При свободном падении = (слайд 10). Воспользуемся результатом решения задачи 1б:

P = m(g – a) = 0,5 кг(10 м/c 2 – 10 м/c 2) = 0 H.

Состояние, при котором вес тела равен нулю, называют состоянием невесомости.

На тело действует только сила тяжести.

Говоря о невесомости, следует отметить, что длительное состояние невесомости испытывают космонавты во время полета при выключенных двигателях космического

корабля, а чтобы испытать кратковременное состояние невесомости, достаточно просто подпрыгнуть. Бегущий человек в момент, когда его ноги не касаются земли, тоже находится в состоянии невесомости.

Презентация может быть использована на уроке при объяснении темы «Вес тела». В зависимости от уровня подготовки класса учащимся могут быть предложены не все слайды с решениями задачи 1. Например, в классах с повышенной мотивацией к изучению физики достаточно объяснить, как рассчитать вес тела, движущегося с ускорением вверх (задача 1а), а остальные задачи (б, в, г) предоставить для самостоятельного решения с последующей проверкой. Выводы, полученные в результате решения задачи1, ученики должны попытаться сделать самостоятельно.

Выводы (слайд 11).

  1. Вес тела и сила тяжести – разные силы. У них разная природа. Эти силы приложены к разным телам: сила тяжести - к телу; вес тела - к опоре (подвесу).
  2. Вес тела совпадает с силой тяжести только тогда, когда тело неподвижно или движется равномерно и прямолинейно, и другие силы, кроме силы тяжести и реакции опоры (натяжение подвеса), на него не действуют.
  3. Вес тела больше силы тяжести (Р > mg), если ускорение тела направлено в сторону, противоположную направлению силы тяжести.
  4. Вес тела меньше силы тяжести (Р < mg), если ускорение тела совпадает по направлению с силой тяжести.
  5. Состояние, при котором вес тела равен нулю, называют состоянием невесомости. Тело находится в состоянии невесомости, когда оно движется с ускорением свободного падения, то есть когда на него действует только сила тяжести.

Задачи 2 и 3 (слайд 12) могут быть предложены учащимся в качестве домашнего задания.

Презентация «Вес тела» может быть использована для дистанционного обучения. В этом случае рекомендуется:

  1. при просмотре презентации решение задачи 1 записать в тетрадь;
  2. самостоятельно решить задачи 2, 3, применяя предложенную в презентации последовательность действий.

Презентация по теме «Вес тела» позволяет показать теорию решения задач на динамику в интересной, доступной трактовке. Презентация активирует познавательную деятельность учащихся и позволяет формировать правильный подход к решению физических задач.

Литература:

  1. Гринченко Б.И. Физика 10-11. Теория решения задач. Для старшеклассников и поступающих в вузы. – Великие Луки: Великолукская городская типография, 2005.
  2. Генденштейн Л.Э. Физика. 10 класс. В 2 ч. Ч 1./Л.Э. Генденштейн, Ю.И. Дик. – М.: Мнемозина, 2009.
  3. Генденштейн Л.Э. Физика. 10 класс. В 2 ч. Ч 2. Задачник./Л.Э. Генденштейн, Л.А. Кирик, И.М. Гельгафгат, И.Ю. Ненашев.- М.: Мнемозина, 2009.

Интернет-ресурсы:

  1. images.yandex.ru
  2. videocat.chat.ru

Существует различие между силой тяжести m g → и весом тела. Понятие веса широко используется в повседневной жизни.

Определение 1

– это сила, с которой притягивается тело Землей и действует на опору или подвес, причем неподвижно и относительно опоры или подвеса.

На рисунке 1 . 11 . 1 изображено неподвижное тело.

Определение 2

Система отсчета, связанная с Землей, называется инерциальной .

Тело подвергается воздействию силы тяжести F → = m g → , направленной вертикально вниз, и силы упругости F → у = N → , действующей на него.

Определение 3

Силу N → называют силой нормального давления или силой реакции опоры .

Действующие на тело силы всегда уравновешивают друг друга по формуле F т → = - F → y = - N → . По третьему закону Ньютона имеем, что тело, подвергающееся воздействию силы P → на опору, равняется по модулю силе реакции опоры направленной в противоположную сторону, тогда P → = - N → .

Из определения видно, что P → называют весом тела. По соотношениям P → = F т → = m g → он равняется силе тяжести. Причем силы приложены к разным телам.

Рисунок 1 . 11 . 1 . Вес тела и сила тяжести. m g → – сила тяжести, N → – сила реакции опоры, P → – сила давления тела на опору (вес тела). m g → = - N → = P → .

Когда тело находится в неподвижном подвешенном состоянии на пружине, тогда роль силы реакции опоры относят к упругой силе пружины. При ее растяжении определяется вес тела и сила его притяжения Землей. Для этого применяют рычажные весы, сравнивая вес данного тела с весом гирь на равноплечем рычаге. Когда они находятся в равновесии, можно достичь равенства массы тела суммарной массой гирь. Значение ускорения свободного падения от этого не зависит.

Пример 1

Если поднять в гору на 1 к м пружинные весы, то их показания изменятся на 0 , 0003 от начального значения. Но состояние равновесия сохраняется. Рычажные весы считают прибором для определения массы тела при помощи сравнения с массой гирь, то есть эталонов.

Если тело располагается на опоре или подвешено на пружине, движущейся с ускорением a → относительно Земли. Такая система отсчета не считается инерциальной. Тело подвергается воздействию силы тяжести m g → и силы реакции опоры N → . Отличие массы от веса состоит в том, что они друг друга не уравновешивают в данном случае.

Исходя из второго закона Ньютона m g → + N → = m a → или N → = m (a → - g →) .

Действующая на опору сила P → со стороны тела называется весом тела, а исходя из третьего закона Ньютона, равняется - N → . Тогда он в равноускоренно движущемся лифте равняется

P → = m (g → - a →) .

Имеется вектор ускорения a → , направленный по вертикали вниз или вверх. При определении оси О у вертикально вниз, векторное уравнение для P → получает скалярную форму записи

Из формулы видно, что P , g и a рассматриваются как проекции векторов P → , g → и a → на ось O Y . Вертикальное направление оси говорит о том, g = c o n s t > 0 , а P и a принимают положительные и отрицательные значения. Рисунок 1 . 11 . 2 показывает направление вниз вектора ускорения a → при a > 0 .

Рисунок 1 . 11 . 2 . Вес тела в ускоренно движущемся лифте. Вектор ускорения a → направлен вертикально вниз. 1) a < g , P < m g ; 2) a = g , P = 0 (невесомость ); 3) a > g , P < 0 .

Формула P = m (g - a) указывает на наличие меньшего действия веса тела P , в отличие от силы тяжести при a < g . Когда a > g , вес тела меняет знак на противоположный. Это говорит о прижимании тела не к полу, а к потолку кабины лифта. При падении тело соответствует условиям a = g , то P = 0 . Это состояние получило название невесомости. Его возникновение возможно в кабине космического корабля во время движения по орбите с выключенными реактивными двигателями.

На рисунке 1 . 11 . 3 показано направление вектора ускорения вертикально вверх, откуда следует a < 0 . Очевидно, что вес тела превышает силу тяжести по модулю.

Определение 4

– это увеличение веса тела, вызванное ускоренным движением опоры или подвеса.

Действие перегрузки на себе ощущали космонавты при взлете во время вхождения в плотные слои атмосферы. Также это явление характерно для летчиков, выполняющих фигуры высшего пилотажа.

Рисунок 1 . 11 . 3 . Вес тела в ускоренно движущемся лифте. Вектор ускорения a → направлен вертикально вверх. Вес тела приблизительно в два раза превышает по модулю силу тяжести (двукратная перегрузка).

Рисунок 1 . 11 . 4 . Модель человека в лифте.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение 1

Вес представляет силу влияния тела на опору (подвес, или иную разновидность крепления), препятствующую падению, и возникающую в поле действия сил тяжести. Единицей измерения веса в СИ принят ньютон.

Понятие веса тела

Понятие «вес» как таковое в физике не считается необходимым. Так, больше говорится о массе или о силе тела. Более содержательной величиной считается сила воздействия на опору, знание которой может помочь, например, при оценке способности конструкции удержать исследуемое тело в заданных условиях.

Вес возможно измерить с помощью пружинных весов, служащих также для косвенного измерения массы при их соответствующем градуировании. В то же время, рычажные весы в этом не нуждаются, поскольку в такой ситуации сравнению подлежат массы, на которые воздействует равное ускорение свободного падения либо сумма ускорений в неинерциальных системах отсчета.

При взвешивании за счет технических пружинных весов, вариации ускорения свободного падения обычно не учитываются, поскольку из влияние зачастую оказывается меньше того, что требуется на практике в отношении точности взвешивания. В некоторой степени, на результатах измерений может отражаться сила Архимеда, при условии взвешивания на рычажных весах тел различной плотности и их сравнительных показателей.

Вес и масса в физике представляют различные понятия. Так, вес считается векторной величиной, с которой тело будет непосредственно воздействовать на горизонтальную опору либо вертикальный подвес. Масса в то же время представляет скалярную величину, меру инертности тела (инертную массу) или заряд гравитационного поля (гравитационную массу). У таких величин будут отличаться и единицы измерения (в СИ масса обозначена в килограммах, а вес- в ньютонах).

Возможны также ситуации с нулевым весом и также ненулевой массой (когда речь идет об одном и том же теле, к примеру, при невесомости вес каждого тела будет равным нулевому значению, а вот масса у всех окажется разной).

Важные формулы для расчета веса тела

Вес тела ($P$), которое покоится в инерциальной системе отсчёта, равнозначен силе тяжести, воздействующей на него, и пропорционален массе $m$, а также ускорению свободного падения $g$ в данной точке.

Замечание 1

Ускорение свободного падения будет зависимым от высоты над земной поверхностью, а также от географических координат точки измерения.

Результатом суточного вращения Земли является широтное уменьшение веса. Так, на экваторе вес окажется меньшим, в сравнении с полюсами.

Другим фактором, влияющим на значение $g$, можно считать гравитационные аномалии, которые обусловлены особенностями строения земной поверхности. При местонахождении тела вблизи другой планеты (не Земли), ускорение свободного падения зачастую определяется за счет массы и размеров этой планеты.

Состояние отсутствия веса (невесомости) наступит в условиях отдаленности тела от притягивающего объекта или его пребывании в свободном падении, то есть в ситуации, когда

${g – w} = 0$.

Тело массой $m$, чей вес анализируется, может оказаться субъектом приложения определенных дополнительных сил, косвенно обусловленных фактом присутствия гравитационного поля, в частности, силы Архимеда и силы трения.

Отличие силы веса тела от силы тяжести

Замечание 2

Сила тяжести и вес представляют собой два различных понятия, участвующих непосредственно в теории гравитационного поля физики. Эти два совершенно разных понятия зачастую истолковывают неверно, используя их в неверном контексте.

Такая ситуация усугубляется еще и тем, что в стандартном понимании понятия массы (имеется в виду свойство материи) и веса также будут восприниматься как тождественные. Именно по этой причине правильное понимание тяжести и веса считается очень важным для научной среды.

Зачастую эти две практически аналогичные концепции применяются в формате взаимозаменяемых. Сила, которая направляется на объект со стороны Земли или другой планеты в нашей Вселенной (в более широком понимании - любого астрономического тела) будет представлять силу тяжести:

Сила, с которой тело оказывает непосредственное воздействие на опору или вертикальный подвес и будет считаться весом тела, обозначаемым как $W$ и представляющим собой векторно направленную величину.

Атомы (молекулы) тела будут отталкиваться от частиц основания. Следствием такого процесса становится:

  • осуществление частичной деформации не только опоры, но и также объекта;
  • возникновение сил упругости;
  • изменение в определенных ситуациях (в незначительной степени) формы тела и опоры, что будет происходить на макроуровне;
  • возникновение силы реакции опоры при параллельном на поверхности тела возникновении силы упругости, что становится ответной реакцией на опору (это и будет представлять вес).